Interactive effects of size, contrast, intensity and configuration of background objects in evoking disruptive camouflage in cuttlefish

نویسندگان

  • Chuan-Chin Chiao
  • Charles Chubb
  • Roger T. Hanlon
چکیده

Disruptive body coloration is a primary camouflage tactic of cuttlefish. Because rapid changeable coloration of cephalopods is guided visually, we can present different visual backgrounds (e.g., computer-generated, two-dimensional prints) and video record the animal's response by describing and grading its body pattern. We showed previously that strength of cuttlefish disruptive patterning depends on the size, contrast, and density of discrete light elements on a homogeneous dark background. Here we report five experiments on the interactions of these and other features. Results show that Weber contrast of light background elements is--in combination with element size--a powerful determinant of disruptive response strength. Furthermore, the strength of disruptive patterning decreases with increasing mean substrate intensity (with other factors held constant). Interestingly, when element size, Weber contrast and mean substrate intensity are kept constant, strength of disruptive patterning depends on the configuration of clusters of small light elements. This study highlights the interactions of multiple features of natural microhabitats that directly influence which camouflage pattern a cuttlefish will choose.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cuttlefish camouflage: The effects of substrate contrast and size in evoking uniform, mottle or disruptive body patterns

Cuttlefish are cephalopod molluscs that achieve dynamic camouflage by rapidly extracting visual information from the background and neurally implementing an appropriate skin (or body) pattern. We investigated how cuttlefish body patterning responses are influenced by contrast and spatial scale by varying the contrast and the size of checkerboard backgrounds. We found that: (1) at high contrast ...

متن کامل

A fish-eye view of cuttlefish camouflage using in situ spectrometry

Cuttlefish are colour blind yet they appear to produce colour-coordinated patterns for camouflage. Under natural in situ lighting conditions in southern Australia, we took point-by-point spectrometry measurements of camouflaged cuttlefish, Sepia apama, and various natural objects in the immediate visual surrounds to quantify the degree of chromatic resemblance between cuttlefish and backgrounds...

متن کامل

Modular organization of dynamic camouflage body patterning in

Cephalopods have the most sophisticated dynamic skin coloration for rapidly camouflage in nature. Previous studies have suggested that the pair of optic lobes located bilaterally in their brain plays a key role in controlling the expansion of chromatophores for generating diverse body patterns. However, the functional organization of the optic lobes and their neural control of various body patt...

متن کامل

Cuttlefish camouflage: visual perception of size, contrast and number of white squares on artificial checkerboard substrata initiates disruptive coloration.

We investigated some visual background features that influence young cuttlefish, Sepia pharaonis, to change their skin patterning from 'general resemblance' of the substratum to disruptive coloration that breaks up their body form. Using computer-generated black/white checkerboard patterns as substrata, we first found that the size of the white squares had to be within a certain narrow range (r...

متن کامل

The use of background matching vs. masquerade for camouflage in cuttlefish Sepia officinalis

Cuttlefish, Sepia officinalis, commonly use their visually-guided, rapid adaptive camouflage for multiple tactics to avoid detection or recognition by predators. Two common tactics are background matching and resembling an object (masquerade) in the immediate area. This laboratory study investigated whether cuttlefish preferentially camouflage themselves to resemble a three-dimensional (3D) obj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Vision Research

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2007